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An extension of the Landau-Ginzburg-de Gennes theory for liquid 
cry st alst 

by L. LONGAS, D. MONSELESAN and H.-R. TREBIN 
Institut fur Theoretische und Angewandte Physik, Universitat Stuttgart, 

F.R. Germany 

(Received I1 February 1987; accepted 8 June 1987) 

Using angular momentum representation a method is proposed that allows the 
systematic construction of a generalized Landaude Gennes elastic free energy of 
liquid crystals, in powers of a symmetric and traceless tensor order parameter, 
polarization field, of external fields and all respective derivatives. By this method 
all linearly independent elastic invariants and surface terms are constructed for 
nematics and cholesterics up to fourth order terms. In particular it is shown that 
up to fourth order in the tensor order parameter there are nineteen bulk elastic 
constants and four surface terms in the free energy of a general, biaxial nematic. 
In addition, the stability of this expansion is studied in detail. Some special cases 
of the elastic free energy of liquid crystals, already discussed in the literature, are 
reexamined and discrepancies with our results are emphasized. Finally, a thermo- 
dynamically correct way of establishing contact between the generalized de Gennes 
elastic free energy and other theories, like those of Oseen-Frank or Meyer, is 
proposed by applying fluctuation theory. Thus, the degeneracy of splay and bend 
elastic constants is removed even when these are calculated from the standard de 
Gennes free energy. Restrictions on higher order elastic constants are also 
obtained by comparing mean field relations and stability conditions with available 
experimental data. 

1. Introduction 
Liquid crystals exhibit a rich variety of phases. Most extensively investigated are 

the isotropic, nematic, cholesteric, smectic A phases [l] and recently the blue phases 
[2]. Much interest has been focused on both elastic and thermal properties of the 
orientational degrees of freedom. It is widely accepted that the orientational proper- 
ties of liquid crystals can be described by a second rank, symmetric, traceless tensor, 
Q(r) with Cartesian components QmB(r) (GI, = x ,  y ,  z) .  The tensor vanishes in the 
isotropic phase and thus serves as an order parameter. In the ordered phases nematic, 
cholesteric, etc., Q(r) has uniaxial symmetry. The symmetry axis is defined by an eigen- 
vector, ii(r), (ti’ = 1) of Q(r), corresponding to the only non-degenerate eigenvalue. 
In the most general case Q(r) has five independent components. This situation describes 
the so-called general biaxial phase [3]. A spatial dependence of Q requires elastic terms 
in the Landau free energy expansion. Together with the thermal contribution the 
elastic terms form the orientational part of the free energy of liquid crystals. 

Historically, the first steps toward our present understanding of the elastic proper- 
ties of liquid crystals were made by Oseen [4], Zocher [5] and Frank [6] (OZF). The 

t Supported in part by Deutsch Forschungsgemeinschaft. 
$ Alexander von Humboldt Foundation Fellow, 1985-1 987. Permanent address: Jagellonian 

University, Department of Statistical Physics, Reymonta 4, Krakow, Poland. 
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770 L. Longa et al. 

OZF description consists of a sum of five functions in the director and its derivatives 
multiplied by elastic constants (material parameters) K,, 

F = ~ d 3 r [ f K , l ( V - A ) 2 + j K 2 2 ( A ~ V  ~ A - q , ) ~ + ~ K , , ( r i x V x r i ) ~  

(1) 

In this and succeeding expressions a subscript after a comma denotes differentiation 
with respect to the corresponding Cartesian coordinate. The free energy (1) contains only 
terms that are symmetric with respect to a change of A into - r i ,  a restriction now 
widely accepted by many authors for weakly polar liquid crystals. As already discussed 
by Frank [6], the elastic constants K,i measure the resistance of three simple types of 
distortion, called splay, twist and bend, respectively while qo is known as the helicity. 

In general, the parameters Kv and q, depend on temperature, pressure and other 
thermodynamic variables. For some phases, like smectics, the number of relevant 
elastic constants can be reduced significantly. It is also worth mentioning that, in the 
expansion (l), the term proportional to (K12 + KZ4)  is often omitted because it can 
be converted to a surface integral by applying Gauss’s theorem. However, for some 
types of boundary value problems [7] and in the presence of defects [8] the surface 
term does contribute to the total free energy. 

The list of formal properties of the OZF expansion must be completed with 
inequalities among the elastic constants that follow from the stability analysis of ( I ) .  
As discussed by Ericksen [9] ,  the Ks are subject to the relations 

KlI 3 0, K2, >, IK241, K33 2 0, 2KIi - K22 - K24 2 0, ( 2 )  
which ensure the internal consistency of the theory. They must be fulfilled in any 
experiment if the theory is complete. Though much effort has been expended to obtain 
the numerical values of the elastic constants [lo-121, it is still difficult to discuss the 
consistency of the theory as dictated by the inequalities (2) since there are no indepen- 
dent measurements of K24. Some authors resort to the assumption of Nehring and 
Saupe [ 131 that 

2K24 = K l l  - K 2 2 ,  ( 3  a)  

3Kl, 3 K22. ( 3  6) 

which, by inequality (2 ) ,  requires that 

The existing experimental data [ 10-12] are generally consistent with the inequality 
( 3  h),  except near the nematic-smectic phase transition. 

In order to generalize the OZF description close to the clearing point, de Gennes 
[I41 proposed a Landau-Ginzburg type of expansion for F in terms of the tensor 
order parameter Q and its derivatives Q,,,, . In the absence of electric and magnetic 
fields, the original expression for F reads 

F = F, + a(T - T*)TrQ2 + BTrQ3 

+ C(TrQ2)2 + . . . 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
2
6
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Landau-Ginzburg-de Gennes theory 77 1 

The parameters a, B, C, Liz’ (i = 1,2,4) are now assumed to be independent of 
temperature T, and denotes the Levi-Civita tensor. In addition summation over 
repeated indices is to be understood if not stated otherwise. The last term in equation 
(4a )  violates parity and is responsible for the formation of a helical ground state. The 
equivalent term in expression (1) is proportional to q0K2,. A further second order term 
in Qap,? 

was omitted by de Gennes because it can be written as a linear combination of a 
surface term and the elastic terms already included in expansion (4a). 

De Gennes’s theory, as expressed by equation (4 a),  gives very simple expressions 
for the OZF elastic constants. However, as pointed out by Lubensky [I51 and de Jeu 
[12], the expansion (4a) implies K , ,  = K33r in clear contradiction to experiment. This 
degeneracy of the elastic constants cannot be removed even by adding the missing 
term (46) to the expansion (4a). A possible way out of this difficulty is to include 
higher order terms, like Q(dQ)(dQ) where Q(dQ)(dQ) denotes the class of all 
independent S0(3)-invariants built up from the tensor QnpQ6E,y Q,”,, . Such a pro- 
gramme has been carried out partially, by Schiele and Trimper [ 161 for nematics and 
has further been generalized by Berremann and Meiboom [ 171 and Poniewierski and 
Sluckin [18]. In [17] the OZF elastic constants are calculated under the assumption 
that Q is uniaxial 

In third order of the expansion the degeneracy of K , ,  and K j 3  is removed. A linear 
dependence of Kii /S2 on S has been predicted, but Berremann and Meiboom had to 
introduce, ad hoc, an additional term to the energy proportional to S4/(l - S)’ to 
achieve agreement with experiment for the temperature dependence of all OZF elastic 
constants. The assumed form, however, of the extra term is not justified by the 
analysis presented. 

A different solution to the problem of the degeneracy of elastic constants was 
proposed by Rohciszewski [19] who showed that instead of including third order terms 
into Landau-Ginzburg-de Gennes theory, one could equivalently introduce lowest 
order elastic terms in additional order parameters, for example, a fourth rank tensor 
Rapy6. This theory is especially attractive because it introduces only two new elastic 
constants and shows the importance of an order parameter such as ( P 4 ) ,  i.e. the 
average value of the fourth order Legendre polynomial. 

In this paper we show that there exists yet another way to remove the degeneracy 
of K , ,  and K33 .  All of the theories mentioned are seriously limited by the assumption 
that the order parameter is strictly uniaxial and that its modulus S is constant. As 
pointed out by Poniewierski and Sluckin [I81 this assumption may not be true in the 
neighbourhood of disclinations, close to a phase transition or at  the interface between 
a solid substrate and a liquid crystal. More importantly, the general third order theory 
in Qm8 is unstable with respect to biaxial fluctuations and thus is thermodynamically 
incorrect. Fourth order terms have to be included (or neglect third order ones) to 
preserve the stability of the free energy. 

Furthermore the generalizations of the OZF theory in [ 17,181 overestimate the 
number of independent invariants in the general biaxial case. The authors use 
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772 L. Longa et al. 

Cartesian tensors, but the Cartesian representation gives only an upper limit for the 
number of independent terms because the constraints 

Qaa = 0, Qrxa.p = 0 (V’B) (6) 

cannot be easily incorporated into the Cartesian picture. For instance, there are only 
six invariants of the form Q(JQ)(dQ) while [17,18] suggest seven. Also, Cartesian 
representation suggests sixteen invariants of the form Q Q(8Q) (dQ) while only 
thirteen are linearly independent. Overestimations of the number of independent 
invariants can be found elsewhere [26]. 

Up to now we have paid no attention to the influence of molecular polarity on the 
thermodynamic properties of liquid crystals. The necessity of including these effects 
was suggested long ago by Meyer [20]. But only recently has a considerable amount 
of evidence become available that strong permanent dipoles may lead to qualitatively 
new phenomena, like the occurrence of antiferroelectric, smectic A phases or re-entrant 
phase transitions [21]. An influence of molecular dipole moments on the properties of 
blue phases has also been indicated by Stegemeyer et al. 121. The evidence motivates 
the introduction of another order parameter in the description of the orientational 
properties of liquid crystals, namely the polarization density P(r). 

Theoretical studies of polar effects in terms of P(r) were initialized by Meyer [20] 
with his theory of flexoelectricity in nematics. He predicted that liquid crystals exhibit 
a special type of flexoelectricity linked with curvature of the orientation pattern. 
Recently, Meyer’s theory has been extended by Barber0 et al. [22] to include effects 
at the solid-liquid crystal interfaces. In these models the polarity is an induced effect, 
strictly related to the molecular shape. A number of papers has also been devoted to 
studies of spontaneous ferroelectricity in chiral systems [23,24] and nematics [25]. 
Among these is the paper of Khachaturyan [25], which discusses the structure of a 
hypothetical ferroelectrical nematic phase. Khachaturyan shows that if a nematic 
ferroelectric liquid crystal with the symmetry group C,, exists, then such a ferro- 
electric will be inhomogeneous with wide domain walls, which are similar to the 
helical structure. 

Finally, the Landau-de Gennes theory has been investigated with inclusion of 
external fields, both electric and magnetic. Although the basic theory is well estab- 
lished [14], it has been generalized only recently to include some higher order cross 
couplings between electric and magnetic fields and the order parameter Q [26]. These 
couplings are relevant because many of the applications of liquid crystals depend on 
their ability to respond strongly to external stimuli. It is also interesting to note that 
in some cases, like the blue phases, the response is difficult to predict [2]. 

Our concern will be to construct a thermodynamically correct, lowest order 
expansion of the orientational part of the liquid crystal free energy in terms of Q, the 
gradient of Q (symbolized by dQ), P, dP, E and H which 

(a) removes the degeneracy of the OZF elastic constants; 

(h )  contains only independent invariants; and 

(c) is, at  least for nematics with zero polarization, stable with respect to general 

Stability conditions of the expansion will be analysed in detail for nematic symmetry. 
Their implications on the elastic constants will be discussed. In particular, it will be 
shown by explicit calculations that there are twenty-two bulk elastic constants and 

biaxial fluctuations. 
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Landau-Ginzburg-de Gennes theory 773 

four surface termi in the elastic energy of general nematics described in terms of Q. 
In addition a systematic study of the surface terms and surface relations will be given. 
In order to find all linearly independent invariants, all surface terms and stability 
conditions, systematic use will be made of the spherical representation for tensor and 
vector fields. This method provides us with an invariant expansion that leads to 
the simplest stability criteria. The final formulas will be converted to a Cartesian 
picture as this allows a compact notation. A connection between standard director 
and tensor pictures is also discussed, that appears as a consequence of applying 
thermodynamic rules. Finally, estimation of various elastic constants from experi- 
mental data is given. 

The organization of this paper is as follows. In 9 2  some basic rules for the cal- 
culation of invariants and surface relations are presented. In 4 3 the general theory for 
systems with nematic and cholesteric symmetries is developed. In 94 the stability of 
the expansion is discussed for non-polar nematics. Section 5 is devoted to systematic 
studies of relations between the director and the tensor pictures. In particular 
formulas for the OZF elastic constants are derived and the importance of thermo- 
dynamic fluctuations is emphasized. In 6 6 the connection between the generalized 
Landau-ile Gennes and the Meyer theories is explored. Section 7 gives an estimation 
of some of tensor elastic couplings. Section 8 closes the paper with a short summary. 

2. General theory 
To establish invariant polynomials in the components of the traceless symmetric 

tensor field Q(r), of the polarization vector field P(r), and of the gradients of both 
fields, we transform from Cartesian to spherical representation. The spherical com- 
ponents of Q form an L = 2 quadrupole tensor QE) (m = 2, f 1,0), where 

The spherical components of any vector field or vector operator A form an L = 1 
dipole tensor A!) (m = f l ,O) ,  where 

I 
In the spherical representation all components QE) are independent, and the con- 
straints Qola = Qba, Tr Q = 0 of the Cartesian representation do not have to be taken 
into account. 

From the components T f  and SF) of two spherical tensors of ranks 1 and q, 
respectively, (21 + 1) (2k + 1) products T' , )Sf ) ,  which are reducible, can be formed. 
'By forming linear combinations weighted by Clebsch-Gordan coefficients, we can 
form (21 + 1) (2k + 1) irreducible components transforming according to the 
angular quantum number L E (1 + k ,  1 + k - 1, . . . 1 I - k I} 
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774 L. Longa et al. 

Table 1. Symmetry properties of basic fields used in the construction of the Landau- 
Ginzburg expansion. 

Sign after 
Tensor Time reversal Space inversion 

Q 
V + 
P + 
E + 
H 

_ _  -_ 

+ + 
- 
- 

- 
+ - 

where ( 1, t2 1 L) are the Clebsch-Gordan coefficients. If T and S are identical, 

then of course permutation symmetry has to be observed, and this reduces the number 
of independent (irreducible and reducible) components. To the product [ T(') 0 S(k)](L) 
we can couple a third tensor RV) to form a spherical product "7"') 0 S ( k ) ] ( L )  0 R'p)](". 

The independent invariant polynomials in the components of the vector fields or  
vector operators A = V, P, E, H, and the quadrupole tensor Q, are now constructed 
by coupling the spherical components to all possible L = 0 (i.e. S0(3)-invariant) 
tensors, which are symmetric under time reversal (i.e. containing only even powers of 
H, see table I )  and which are not conversed mutually by the permutation operation. 
As example for the independent invariants quadratic in dyQrrS,  we couple 8'') and 
(2") to 

[a(') 0 Q(2)](') aQ'", I = 1, 2, 3, 

and then couple these mutually to K = 0. The only possibilities are 

12(L) = [[a(' 0 Q ( 2 ) ] ( L )  0 [a( ' )  0 Q ( 2 ) ] ( L ) ] ( " ) ,  

The spherical representation offers two important advantages: 

(i) The linear independence of Clebsch-Gordan coupled invariants is immediately 

(ii) In many cases (as in our example) the invariants appear as positive definite 
quantities and allow an easy discussion of the stability of the free energy 
expansion. 

As an example we write down the lowest order elastic terms of the free energy density 
in the basis 12(L), from equation ( 8 a )  

evident . 

3 

F = C KL2' Z2(L). 
L = l  

It is seen that because I,(L) b 0, the free energy (8 b) is stable if the elastic constants 
@) are positive. Thus the spherical representation gives the simplest stability con- 
ditions, KL2) 3 0. 
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Landau-Ginzburg-de Gennes theory 775 

Another problem, that can be studied systematically by use of spherical repre- 
sentation is the identification of so-called surface relations. By definition, surface 
relations are linear combinations of invariants which can be expressed as a full 
divergence. Thus, if due to suitable boundary conditions surface terms vanish, certain 
invarian s become linearly dependent. This allows for further simplification of the free 
energy expansion. The number of surface relations is found in a systematic way as 
follows. First, the number of independent divergence terms associated with a given set 
of invariants is found using spherical representation. For instance, the invariants in 
equation (8 a)  are combined to surface terms via equation 

' y ( Q a f i Q p v . e )  = Q a ~ . y Q p v , p  + QapQpv,ey. (9) 
It is straightforward to write a similar relation in the spherical representation using 
the correspondence 

~ y ( Q . f i Q p Y , p )  ++ 8") 0 (Q'" 0 8'') 0 Q'2') 

and 

According to equation (9) each divergence term can be written as a linear combination 
of the invariants and some higher order terms, like QopQJrv,Qy or equivalently 
Q'" 0 a(') 0 8) 0 Q(2). Now suppose that the number of independent divergence 
terms is k ,  the number of invariants is 1 and the number of higher order invariants 
generated by divergence terms is n (k  d n + l ) .  By taking linear combinations 
of various divergence terms we obtain new (k  - n )  full divergence terms which 
are expressed as linear combinations of invariants and in which higher order invari- 
ants do not appear. They are precisely the surface relations we are looking for. 
Thus, the number of surface relations is given by the difference k - n .  Returning 
to our previous example we find that there are three independent invariants 
in the tensor space 8') 0 (Q") 0 8') 0 Qf2)) and two higher order invariants 
Q(2) 0 8') 0 d( ' )  0 Q(2).  Consequently, there exists only one surface relation built up 
of the invariants (8) that allows us to eliminate the term ( 4 6 )  from the free energy 
expansion (4  a), as originally done by de Gennes. Although the spherical representa- 
tion easily solves the problem of the number of linearly independent invariants and 
surface relations, the most easily understood form for the free energy is obtained in 
the Cartesian representation. Hence, to construct the free energy expansion, we 
proceed in the following way: 

(i) first, we calculate the number of linearly independent invariants and surface 
relations using the spherical representation; 

(ii) next, we look for the corresponding set of Cartesian invariants and extract 
from this set linearly independent terms; if this is difficult the linear indepen- 
dence of invariants is studied using computer programs for algebraic manipu- 
lation; 

(iii) finally, we study the stability of the free energy in the spherical representation 

Furthermore, all terms appearing in the free energy expansion are classified with 
respect to space reversal transformations as SO(3) or O(3) invariants. The space 
inversion divides all invariants into scalars (nematic symmetry) and pseudoscalars 

and transfer the results to the Cartesian representation. 
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776 L. Longa et al. 

(cholesteric symmetry). A full list of sign changes of basic tensors used to construct 
the free energy expansion is given in table 1. 

3. Invariant expansion of the free energy 
In the preceding section we showed a systematic way, with which to construct the 

Landau-Ginzburg4e Gennes expansion for the free energy to arbitrary order. As we 
have seen from a simple example, a higher order approximation requires careful 
elimination of the constrains Qua = = 0, and so we propose to use the spherical 
representation for the tensor fields. Statements about the number of independent 
invariants are listed in table 2. We now discuss some of these results in a more detailed 
manner. First, we define the orientational free energy as a sum of bulk and elastic 
terms 

S, d3r [Fbulk  + FN,eI + F c h , e ~  + F p , d  + F e x t , e , l ,  (10) 

where F b u l k  is given by 

F m  = a(T - T*)TrQ’ + BTrQ3 + C [TrQ2I2 

+ D [Tr Q’] [TrQ3] + E [TrQ2I3 

+ p lP2  + p2P4 + vPaQapPb + E,P  E 

+ E‘ [Tr Q3 1’ - $ A ~ m a x  Ma Qab Mp - t A~mm Ea Q a  Eb 

+ E ~ P ~ Q ~ ~ E ~  + ’ . (1 1) 
and where the terms FN,e,, Fch,el, FP,,,, F,,,,, represent elastic contributions with 
nematic, chiral, polar, and external fields couplings, respectively. Apart from the 
standard terms the bulk free energy also contains lowest order couplings with the 
polarization field P, and with external fields. These extra terms (together with gradient 
terms discussed later in this paper) could in principle modify phase diagrams for 
nematics, cholesterics and blue phases, a possibility which will be discussed in a 
forthcoming publication. Our concern now is to study meticulously the form of elastic 
terms in the expansion (10). 

3.1. Elastic free energy of nematic liquid crystals 
The expansion of the free energy in powers of Qab and its derivatives up to the 

order Q Q dQ dQ, contains twenty-two terms and four surface relations (see 
table 2). They are 

dQ dQ [14]: 

Q dQ dQ [16-18]: 
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Landau-Ginzburg-de Gennes theory 777 

Table 2. Number of invariants and surface relations in the generalized Landau-Ginzburg-de 
Gennes theory. We denote with an asterisk the numbers that are different from those 
cited in the literature. 

Number of Number of 
Invariants composed Surface Inversion Number of surface surface 
of Q and dQ terms symmetry invariants terms relations 

Invariants composed of 
P, Q, E and H Inversion symmetry Number of invariants 

Invariants composed 

E and H 
O ~ Q ,  aQ, P, ap, 

Surface terms 
Inversion 
symmetry 

Number of 
invariants 

Number of 
surface 
terms 

Number of 
surface 

relations 

1 
3* 
5 
1 
1 
3 
2 
5 
2 
3 
7 
2 
2 
2 
1 
1 
1 
2 
1 
2 

1 
2 
2 

1 

2 

2 

3 

8 

2 

1 
1 

1 

2 
2 

- 

1 
2 

1 

2 

2 

1 

3 

2 

1 
1 

2 

- 

1 

1 
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778 

QQ dQ dQ:  

L'i4'(Tr Q') Qpii.PQ,,v.v, Li4'(7'rQ2) Q,V,0Q,v.Q7 

G4'(Tr Q2) QpL, ,pQpp,b ,~  L~4)QapQe~Qa,,pQpY,", 

L:4)QIpQp~Qurr.~Qrv.v 9 Lk4'Q,,Q,,Q,p,,Q,Y,,, 

L. Longa et al. 

3.2. Elustic free energy with purely chiral terms 
Up to fourth order in Q there are four chiral terms linear in the gradient of Q 

which are readily determined by the method described in Q 2, 

In deriving the number of fourth order terms use has been made of the decomposition 
of the representation Q"' @ Q"' 0 Q"' into a direct sum of irreducible representa- 
tions 

Q'" @ Q"' @ Q(2' = Do @ D2 @ D3 @ D4 @ D6,  
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,Landau-Ginzburg-de Gennes theory 779 

where DL = [Q(’) 0 Q(’) 0 Q(2)](L) is the irreducible representation corresponding to 
angular momentum L. 
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780 L. Longa et a f .  

3.4. Elastic couplings with external fields 
For this group the dominant contributions are of the form 

EaQ P61, EQaQ, EQQaQ: ( 1 7 4  

This group of terms can be obtained by replacing P, with E, in equation (15 a)-( 15 c). 
Additionally we have cross-coupling terms: 

EQaP, EPdQ: 

i C\’)~ap;EpQyaPy,/~, CY)E~/~~E~Q/IQP~.Q, 

C$‘)Ea/j;>E,PyQQx.p, C$‘)Eab,EaPyQ,,,Q. 

Surjace refutions: 

EEaQ [26]: 
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Landau-Ginzburg-de Gennes theory 7 8  1 

There exists a term analogous to (1 7 c) for the coupling of Q with an external magnetic 
field [26]. 

4. Stability of the nematic expansion for P = E = H = 0. 
General relations between the elastic constants can be obtained in the form of 

inequalities from the requirement that the elastic free energy expansion be stable with 
respect to order parameter fluctuations. As an example, let us consider first the case 
of a nematic phase whose elastic properties can be described by means of F N , e l ,  where 
F N , e l  is the linear combination of invariants [L!’)], i = 1,2,3. Because invariants [L$2)] 
are bilinear forms in QaS,?, the free energy FN, el is a bilinear from in fifteen-dimensional 
space, spanned by independent fields QaS,?. Thus, the stability requirement of FN,el can 
be translated into the positive definiteness of the bilinear form. On the other hand, the 
positive definiteness of the bilinear form is most easily studied in the basis that 
diagonalizes the matrix of the form. In this basis the stability requirement means that 
all eigenvalues of the matrix of the form are positive numbers. 

The advantage of using the spherical representation in finding stability criteria is 
that the matrix of the form is diagonal in independent variables a&’, L = 1,2,3; 
m = - L , .  . . , L  

3 3  

F N , e l  = 1 L~2’[L~2’]  = 1 J$’ZZ(J) 
a =  I J = I  

I 

Thus, F N , e l ,  equation (18 a), written as the sum of independent, positive definite terms, 
leads to a simple set of inequalities, 2 0, L = 1,2,3 which preserves its stability. 
These inequalities can also be rewritten in an equivalent form by using the elastic 
constants Li2). Replacing [Liz’] in equation (18a) by linear combinations of Z2(p) (see 
the Appendix) and extracting the coefficients fit) gives 

Ly’ + Lf’  2 0. 

Conditions ( I  8 b)  are necessary and sufficient for the free energy expansion (1 8 a) to 
be stable. 

Qualitatively different inequalities are obtained by assuming that for all physically 
relevant fields the surface energies are negligible in the thermodynamic limit. For 
instance, the relation between second order terms 

= lim iJ d3x([Li2’] - 
Y-m ,, [L!”]) = 0,  

leads to, [Lp)] = [L?)], where the equivalence relation = means equality up to the 
surface terms. This, in turn, allows us to eliminate [Li2)] (or Z2(3)) from the free energy 
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782 L. Longa et al. 

expansion (1 8 a). In this case, the relations (1 8 6)  give simpler inequalities [ 141, 

L$ 3 0, L$ + 3Li2' 2 0, with LS2) = 0. 

This analysis does not apply directly to higher orders of expansion of F N , e l .  To 
address the problem more specifically, let us investigate the stability conditions for the 
fourth order expansion of F N , e i ,  given by 

The expansion (1 9) is a polynomial of fourth order in independent fields Q., and Qa,,y. 
Thus the problem of stability of expansion (19) is now reduced to a study of the 
properties of fourth order polynomials in the twenty-dimensional space of Q,, and QaS,?. 
This appears to be a rather difficult problem. Still using the notion of bilinear forms, 
a simple analysis could be given that allows us to determine sufficient conditions for 
the free energy (19) to be stable. Namely, let us rewrite expansion (19) as a sum of 
expressions that are full squares. To do so, we note that expansion, in equation (19), 
could be considered as a general, bilinear form in the variables Q.,,y, Q,, Qys,@. The 
easiest way to diagonalize this form is again to transform to a spherical representation 
and consider the invariants [L)")], (cf. equation (19)), rewritten in terms of the 
spherical basis dQ(J)  and [Q") @ dQ(L)](J) .  In analogy to the second order invariants, 
(cf. equation (8  a)), we can now construct third and fourth order spherical invariants 
as follows: 

Z3(u) = [dQ(J) @ [Q(*) @ dQ(L)](J)](o),  ~1 = 1, . . . , 6  (20 a) 

Z4(p) = [[Q'" @ dQ(L)](J)  @ [Q'2' @ dQ(M)](J)](o) ,  p = 1,. . . , 13. ( 2 0 b )  

The problem that has to be solved first is the identification of all linearly independent 
invariants (20 a, h) or equivalently, all relevant representations parametrized by J,  L 
and M .  

In the search of the invariants the permutation symmetry has to be taken into 
account. To set the problem more specifically, let us find linearly independent, fourth 
order, spherical invariants, of the form dictated by equation (20 h).  For this purpose 
it is convenient to introduce a spherical reference basis of linearly independent 
invariants, defined as [[Q") @ Q(2)]('12) @ [a@"' @ dQ('4)]("2)](o) ( 1 3 ,  l4 = 1 3 , .  2 3 )  In 
this basis invariance of the term [Q(2) @ Q ( 2 ) ] ( ' 1 2 )  with respect to the permutation of Q'" 
allows only even values of I,, ( = 0,2,4) where each representation appears exactly 
once. Now, studying the coupling @ dQ""]""', and observing correctly the 
permutation symmetry with respect to dQ, we immediately find that in this tensor 
product representation I,, = 0 appears three times, representation Z,, = 2 appears six 
times and representation I,, = 4 appears four times. Thus, we again have thirteen 
linearly independent invariants which can be classified in two groups. The first one 
contains eight invariants which result from couplings with I, = l4 and the second 
contains five invariants due to couplings with l3 # 14. 

Now consider the spherical coupling (20 b). Because the permutation symmetry is 
not immediately evident, this sort of coupling leads to twenty-three invariants. They 
are divided into two groups whose members are counted by a simple addition of 
angular momenta: a group of thirteen positive definite invariants with L3 = M4 and 
a group of ten indefinite invariants with L3 # M4. In order to extract thirteen linearly 
independent terms we expand these twenty-three invariants in our spherical, reference 
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Landau-Ginzburg-de Gennes theory 783 

where L,  M = 1,2,3,f = ,,/ (21 + 1) and where {. . .} are 9j-symbols. The expression 
(20 c) relates the twenty-three linearly dependent invariants of the type (20 b) (cf. the 
left-hand side of equation (20 c)) to the thirteen linearly independent invariants of our 
reference basis (cf. the right-hand side of equation (20 c)) and allows us to extract out 
of these twenty-three invariants a set of thirteen linearly independent invariants of the 
form (20 b). As shown in the previous paragraph, these thirteen linearly independent 
invariants can also be ordered with respect to L and M. We find that the case L = M 
yields eight linearly independent invariants; the remaining five invariants carry 
L # M .  Relations between /3, J ,  L and Mare given in table 3. A similar analysis could 
be given for the third order invariants, cf. equation (20a); The results are collected in 
table 3. The transformation matrices between spherical and Cartesian representation 
are also given in the Appendix. 

Table 3 .  Parameters of the independent invariants of (a)  third order, (cf. equation (20 a)), (b) 
four order, (cf. equation (20 b)). 

B 
1 
2 
3 
4 
5 L = M  

6 
I 
8 
9 

10 
L # M  I 1  

12 
13 

(4 
J L 
1 1 
2 1 
1 3 
2 2 
2 3 
3 3 

M 
(b) 

L 
1 1 
1 1 
2 2 
2 2 
2 2 
3 3 
3 3 
3 3 
1 2 
1 3 
1 3 
2 3 
2 3 

J 
1 
2 
0 
1 
2 
1 
2 
3 
1 
1 
2 
1 
2 

After rewriting the expansion (19) in terms of the spherical invariants, (cf. equations 
(8 a), (20a, b) and (table 3)) we find the alternative expression 

3 6 13 

= 1 K',2)~2(n) + C K ~ ) I ~ ( W )  + C f14)Z4(l) 
n = l  m = 1  / = I  
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784 L. Longa et al. 

where matrices C ( J )  are defined as 

and where 

T(0, 1 )  = [Q”’ @ dQ(2)](o), T (J ,  1) = J = 1,2,3, 

T ( J , y  + I )  = [Q‘2’ @ aQ(>’)]‘”, J = 1,2, = 1,2,3, 

T(3,2) = [Q(2) @ dQ(3)]‘3’. 

Note, that for a given J ,  a, T ( J ,  M) is the spherical tensor of dimension 25 + 1. 
Diagonalization of the form ( 2 0 4  leads to 

where @“ are eigenvalues of the matrices C(J)  and where F ( J ,  a) = 0:;) T ( J ,  f i), here 
O ( J )  is the matrix diagonalizing C(J).  

It is interesting to note that in equation (20e) the free energy is expressed as a 
sum of eleven positive definite spherical invariants [ F ( J ,  a) 0 F ( J ,  a)]‘”. Thus, the 
formula (20 e)  yields directly the stability conditions for the elastic constants &) 

2 0. (20f 1 
These are equivalent to the requirement that all main minors of the matrices C(+’) be 
positive. Finally using relations between spherical and Cartesian invariants (Appendix) 
inequalities (20f) can be rewritten in terms of LLrn). These are sufficient conditions for 
the free energy density, in equations (19) and ( 2 0 4 ,  to be positive definite. 

Finally, if contributions to the free energy from the surface terms, (cf. equation 
(1  3 a)-( 13 d ) ) ,  are negligible in the thermodynamic limit, we can eliminate four 
invariants from the expansion (20 d) ,  further simplifying the stability conditions. 

5. Oseen-Frank theory and Landau- Ginzburg-de Gennes expansion 
In this section we show how the Frank free energy, which depends on the two 

independent variables of a unit vector, can be obtained from the free energy expansion 
in terms of the five independent components of a symmetric, traceless tensor. This 
question has already been discussed in the literature in the mean field approximation 
[15-17]. Here we present a systematic approach to the problem. In particular, we 
study the effect of fluctuations of Q on the elastic constants. 
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Landau-Ginzburg-de Gennes theory 785 

The order parameter Q(r) can, in general, be rewritten in the form 

Qap(r) = S(r) [nz(r)ng(r) - 6 z p / 3 l  + [(r) {ma(r)mg(r) 

- [fi(r) x fi(r)la * [fi(r) x &(r)Ip}, (21) 
where n,(r) is the direction corresponding to the maximum eigenvalue fS(r) of Qas(r), 
and ma(r), the direction corresponding to the second largest eigenvalue -+S(r) + 
[(r). In the orthonormal coordinate system defined at each point in space by ri(r), &(r) 
and i ( r )  x &(r) (n,(r)n,(r) = m,(r)m,(r) = I ,  n,(r)m,(r) = 0), Q,,(r) has the 
canonical form of equation (21). For uniaxial nematic liquid crystals with constant S 
equation (21) reduces to equation (5 ) .  

The Landau-de Gennes expansion can be written either in terms of QaB(r) or [S(r), 
[(r), n,(r), mg(r)]. These two expansions must be equivalent order by order. Thus, 
each term Qap(r) corresponds to exactly one in [S(r), . . . , ma(r)]. The form of the 
couplings between [S(r), . . . ,mg(r)] is dictated by the expansion in Q,,(r), because 
this is the basic order parameter describing the orientational pattern of liquid crystals. 
It implies, for example, that invariants like na,,np,p only appear coupled to S2(r) or 
higher powers. 

A systematic procedure with which to obtain the OZF free energy from the general 
expansion in Qaa is the following: 

(i) First, we substitute the canonical representation, equation (21), into the 
Landau- Ginzburg4e Gennes free energy and consider the spatial variation 
of ri(r) in space as fixed. 

(ii) Second, we average the free energy over the remaining fields [(r), &(r) and 
6S(r) = S(r) - Sunder the constraints &* = 1 and ri - & = 0. Here S is  the 
mean field value of S(r) in the nematic phase. Scan be calculated by minimiza- 
tion of Pmf, (cf. equation (26a)) with respect to S (s  = (1/V) l,, d3rS(r), 

Taking the fields 6S(r), [(r) and &(r) to be random variables the Frank free 
energy 9 [i(r)] can be obtained as a thermal average over all their possible spatial 
variations 

smi, = S ) .  

9 (i(r)) ( W r ) )  9 (Wr)) s F[[A(x)] = -kTln 
m*(r)= I,ri(r). m(r) = 0 

x exp { - p s,, d3 rF[ri(r), [(r), riz(r), 6S(r), derivatives] , (22) 

with p-' = kT, while J 9 ([(r)) . . . denotes functional integration over all possible 
fields [(r), . . . [28]. 

For translationally invariant systems the functional integral (22) can be calculated 
by decomposing [(r), &(r), 6S(r), ii(r) into Fourier components via 

I 

1 
[(r) = - 1 [k exp (- i k  - r). 

V k  

Because [(r) . . . are real fields we have additionally [k = [ *k  . . . and the space of the 
distribution is covered by having the amplitudes [k, 6 S k  vary over all complex Values, 
thereby k is restricted to half space. As long as the volume is finite, the values k are 
discrete, and the functions satisfy periodic boundary conditions. This choice guaran- 
tees a set of distributions that preserve continuity and differentiability properties. 
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786 L. Longa et al. 

The standard coarse graining procedure is introduced by including the Debye cut 
off for wave vectors 

Ikl < A = (67r2~)1’3, 

where e is the particle density. The measure is then written as 

D[(r). . . = fl 
k >Olkl < A  

g [ k . .  . n [6(Ak,,riz,.)6(rizk,,ti,.)]6 1 f i k  n - k  6 h k ’ & k  - 1 ). } (24) 
k # k” (!i ’ ”  ) ( k  

Assume now that F is given by equation (4a) with Liz’ = Lk2) = 0. Substituting 
equations (21) and (23) into equation (4 a)  and neglecting the terms that are of order 
higher than four in fluctuating fields yields 9 [ri(r)] in the form 

9 [A1 = srnf(S) + F F r a n k  + F f l u c t ,  (25) 

where 

Frnf(S) = 

is the standard Landau part 

FFrank = (2Lp 

(26 b) 

is the mean field part of OZF free energy [15-171. The mean field formula (26b) 
leads to the well-known degeneracy of the splay and bend elastic constants 
K,,  = K33 = 2(L‘,’) + L$”)S’. It is perhaps worth mentioning that the parts Frn,and 
FFrank of 9[ti] could also be obtained in a different way by applying the method of 
steepest descent [28] to the functional integral, equation (22). 

The last part of 9 [ r i ] ,  denoted as Ffluct appears as a result of fluctuations of 
various fields. In order to construct an expansion of F&, we separate the free energy 
into two parts, a gaussian part Ho and a perturbation part H I ,  

FfluC, = - kT In (measure, equation (24)) exp (b[Ho([ ,  dS) + H ,  ([, riz, dS, ti)]}. 

(27) 

i 
The gaussian part Ho corresponds to the quadratic contribution in the variables [ and 
6 s  to the free energy. All terms higher than quadratic will be kept in H I ,  viewed as 
perturbation of Ho. We obtain the following expression for Ho 

Ho = 1 [ A , ( k 2 ) 6 & 6 S - k  + a L $ 2 ) k 2 d & [ - k  -k A 2 ( k Z ) [ k [ - k ] ,  (28) 
k 

I k l < A  

with 

Al(k2) = $ [ A  + BS + 4CS’ + (Lf’ + :Liz’) k’], 

A2(k2) = 2 [ A  - BS + $CS’ + (LIZ’ + )L$”)k’], 
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Landau-Ginzburg-de Gennes theory 787 

In H I  we neglect all terms proportional to n,m,,B that cannot be converted to terms 
This allows us to construct the simplest perturbation scheme that takes into 

account restrictions on ri? and A. 
In the limit of long wavelength deformations of the director field, A(r), the 

effect of fluctuations on the OZF elastic constants is evaluated by performing a 
cumulant expansion for FR,, about H, with H I  as the perturbation. In lowest order 
we obtain 

= [(2L$ + Ly’)((6S2), - (i2)(J + ~L12’(i’)0] 

x j(V.A)’d3r + [2L$((6S2), - ( 1 2 ) , )  - iLi2)(12)o] 

x [ ( i t  - V x A)2d3r + [2L\’)((6Sz), - (i2),,) 

+ Li2’((SS2)o + 2 ( S S l ) , ) ]  (A x V x A)’d3r + . . * , (29) 5 
where 

( A ) ,  = Z i ’  (measure, equation (24) A (i, 6 S , .  . . , r i )  exp (- BH,) s 
and 

Explicit calculation yields 

A k’dk A,(k2) 

A k2dk A2(k2) 
( 1 2 > o  = B- ’  so ==A,’ 

where 

A more comprehensive analysis will be given in a forthcoming publication [30]. 
The main results can be summarized as follows. 

In general, the effect of fluctuations in the nematic phase is to renormalize the 
Frank elastic constants. In the approximation that takes into account only quadratic 
terms in the fluctuating fields this renormalization does not remove the degeneracy of 
K , ,  and K33 .  However, it leads to a non-standard temperature dependence of the 
elastic constants, keeping them non-zero even for S = 0. Interestingly, the higher 
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788 L. Longa et al. 

Table 4. Mean field decomposition of aQ aQ, Q aQ aQ and Q Q aQ aQ invariants onto 
splay, twist, bend and surface components. 

Invariant (V ?q2 (ti * v x 6)’ (ti x v x ti)* ‘ I J  ‘J.1 - ‘t.i’J,J 

2 
1 
1 
0 

- 1/3 
213 
113 
213 

213 

119 

119 

- 113 
213 
413 

0 

419 
519 
419 

- 219 
- 119 

0 
0 

2 
0 
0 
0 
0 
0 

0 
0 
0 

41 3 
0 
0 
0 
0 

519 
0 
0 
0 

0 
0 

113 

- 119 

2 
1 
1 
0 

213 

113 

213 
213 

213 

119 
519 
119 

219 

- 113 

- 113 

41 3 

0 
419 

419 
- 219 

0 
0 

2 
0 
1 
0 
0 
0 

113 
213 

213 

- 113 
0 

413 

0 
0 
0 

519 
419 
119 
0 

0 
0 

- 1/9 

order terms, proportional to m,ms remove the degeneracy of K , ,  and K33 

K33 - K,,  = L(22)(a<12>o + 2<6SO,) > 0, (32) 

where the last inequality is valid provided that L‘,2) and Li2) fulfil the stability con- 
ditions in equation (19) with Li2) = 0. 

In still higher order than presently treated we observe a non-local interaction 
between the director field and its derivatives like d3 rd3 r’K(r, r ’ )  [d,n,(r)]2[d,n,(r’)]2, 
where the kernel K(r, r ’ )  = K(r - r ’ )  is nearly the Fourier transform to real space 
of the mode-mode correlation functions. 

Inclusion of higher order couplings, like Q dQ dQ and Q Q aQ dQ to the free 
energy expansion, makes the reduction to the Oseen-Frank description rather dif- 
ficult. For that reason we restrict the analysis of higher order tensor couplings to the 
presentation of mean field results. These are collected in table 4. Note that our 
expressions for Lc) are different from those given by Berreman and Meiboom (BM) 
[ 171. In their expression Gi3) (equivalent to our [Li3)]) there is a contribution from the 
twist deformation, which in our expression is replaced by surface term. Additionally, 
in the BM formulae the factor 1/3 is systematically missing. From table 4 it follows 
that there are five different third order and ten fourth order expressions which are not 
identically zero for uniaxial nematics with a position independent order parameter S.  
In third order we have one relation less than BM. Since there are more tensor 
functions, [L:m’], than OZF elastic terms, the tensor functions are not all independent 
for strictly uniaxial variations of Q with constant S .  These relations can be found with 
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. Landau-Ginzburg-de Gennes theory 789 

the results of table 4 

[~j3)1 = 0, 

2 [ ~ y q  + [ ~ p q  - [ ~ p q  - ~[Ls) ]  = 0, 

S[Lf’] - 12[L$4’] = 0, 

.5[Lj4’] - 6[L‘p’] - 6[Lf’] = 0, 

[L\4’] + 4[L$”] - 6[Lg4)] - 6[Li4’] = 0, (33) 

[t14)’3 + ~[L\;)I = 0, 

q ~ p ]  + [ L ~ I  - 12[~!p)] + 12[~14q = 0, 

[ L ~ I  = [L\;)I = [L!:)] = 0. 

[L$“’] - [Li4’] - 6[Li4’] + 6[Lb4’] = 0, 

Berreman and Meiboom [17] give two rather than one relation among the third order 
expressions. The second one, however, is not independent because of the general 
relation (13f). To complete this paragraph we give mean field formulae for the 
cholesteric pitch. Up to fourth order in S we find from equation (1) and (14) 

(34) 
L p  

3 3  qoK,, N 
- S3 - - 2 S 4  ()L(“) - ,5(4)), 

14 15 

6. Generalized Landau-de Gennes expansion versus Meyer theory 
As we have discussed in the Introduction Meyer [19] was the first to point out that 

the polarization density field, P(r), could play an important role in the continuum 
theory of liquid crystals. He showed that for nematics the presence of P leads to new 
elastic terms, 4,  that have to be added to the OZF expression (1). Including only 
lowest order interactions between the different fields he showed that 

- eyEll (V - r i )  - e!E, * (ri x V x r i )  

- a, PI, (V * r i )  - a3P, - (r i  x V x r i )  

- PIPII~II - PSP, * EL5 (35) 

where 1 1  (I) denotes component, or vector parallel (perpendicular) to r i .  The coef- 
ficients a l , .  . . , p 3  are new elastic constants. 

The most interesting terms identified by Meyer are those weighted by the flexo- 
electric coefficients ey and e: and the flexopolarization coefficients a, and a3. They 
describe how the basic deformations of the director field couple to the polarization 
and an external electric field. Because flexoelectricity remains one of the few funda- 
mental effects in liquid crystal physics which were predicted primarily by symmetry 
arguments, it appears interesting to establish the equivalent tensor invariants. 
This again is easily achieved by applying the mean field approximation to the results 
of 9 3. In particular, substitution of equation ( 5 )  into equations (1  5 a)-(1 5 d )  yields 

a, = 

a3 

- SA\2’ - sz ($43) - ‘A‘” ) + s3 ( $ 4 4 ’  - 4’4‘4’ - 2A‘4’), 

SA$ - s 2  (+AI“’ - $#’) - s3 (&@’ + $ 4 4 )  + $ 4 4 9 ,  
} (36) 

3 2 9 4  3 5  

= 
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790 L. Longa et al. 

similar relations hold for the coefficients ey and e!. From expressions (36) it follows 
that the coefficients a , ,  a3 (or ey, e:) are related. For instance, up an order linear in 
S they should only differ in sign. If chiral terms are included, we have to add 
cross-coupling terms of the form 

} (37) 
[pi = - S(E - r i )  P . (v x ri) - sri - [P x V(E - rill, 
[[p'] = S ( V . A ) E - ( r i  x P) - SE.[(ri x V x r i )  x PI. 

Again, we would like to emphasize that the relations (36) and (37) apply only as long 
as the nematic liquid crystal is strictly uniaxial. 

7. Relations between I,:'") and the OZF elastic constants 
We have shown how the Landau-Ginzburg-de Gennes expansion for the free 

energy of a strictly uniaxial strained nematic liquid crystal is related to well-known 
OZF expansion. The simplest relations are obtained in the mean field approximation 
(see table 4 and equation (33)). As these equations also relate the OZF elastic 
constants K ,  with the Landau-Ginzburg-de Gennes elastic constants Lirn), it is 
possible to estimate values for some of the LLm) from existing experimental data on the 
temperature dependence of K ,  . From table 4 it follows immediately that 

(38) - -  Kv - J$) + S q )  + S21yIj4), (ij) = (1 l), (22), (33), (24), 
S2  

where I$') are linear functions of Lim) (m = 2,3,4) and where K{:) = l@. This result 
generalizes to the case of higher order invariants of the form Q . . . Q aQ dQ. 
Summing up the terms in orders of S we arrive at  K, = S'L,(S), wheref;,(S) is, in 
principle, an arbitrary function of S. 

As there are more elastic constants Lp)  than &$$"I, it is not possible to find a 
one-to-one correspondence between them without resorting to some additional 
approximations or complementary information. In principle two different solutions 
to this problem are immediately clear. First, we assume that the tensor field Q(r) is 
known and that surface energies, (cf. equations. (1 3 a)-( 13 d)) of Q are negligible in 
the thermodynamic limit. With this assumption we can eliminate four elastic terms, 
say [LS2)], [Lr)], [L$)] and [Lb4)], from the general expansion in [L:)]. Now, using the 
decomposition of Q(r) in equation (21), we calculate the ri(r) contribution to the 
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As we can see from equation (39), only a few elastic constants are estimated using this 
method. The remaining ones appear in linear combinations and nine complementary 
equations are needed relating these elastic constants with elastic constants of the field 
f i  to find one-to-one relations. The estimated values could, in principle, be tested 
against the stability conditions given in $4 but because of the high number of free 
parameters, these inequalities are not very restrictive. 

An alternative approach is to start from a given director field, A(r). Using equation 
( 5 )  we now construct a uniaxial approximation for Q.,. In this case invariants [LE)] 
are no longer independent and the uniaxial restrictions, (cf. equation ( 3 3 ) ) ,  have to be 
taken into account. In addition surface energies cannot be disregarded. 

Neglecting invariants [LEI] with high index m (as dictated by relations ( 3 3 ) )  and 
resorting to the assumption of Nehring and Saupe, (cf. equation ( 3  a)) it follows that 

(40) I L(2) = Lf i2 ’  L(2) = L(2) = l ( f i 2 )  - 
I 4 2 2 9  2 3 4 11 KP), 

L53) = K‘3) - 3G3) 1 K(3’, 

3 a;) L(3) = l f i 3 )  - 9K(3) 2 33 8 22 + i z q ,  Lk3’ = - 

L(3) = Z(jy(3’ - f i 3 9 ,  
L(4’ = - lK(4) - t f i4 ’  5 K(4), Ly) = 3K(4) 

L(4) = 3 ( K p  - K g ) ,  Li4) = + ( K g  - Kill). 

33 2 22 + 1 I I  

2 ’  3 

5 8 I I  22 

I 4 33 2 2  + 8 I I  8 22 3 

3 

Taking the experimental data for 4-methoxybenzylidine-4’-n-butylaniline (MBBA) 
and E7 from [lo, 11,171, using relations ( 3 3 ) ,  table 3 and resorting to the approxi- 
mation (3a) ,  we obtain values for @) as listed in table 5.  These parameters are 
imprecise as they are strongly based on the assumption, (cf. equation ( 5 ) )  of uniaxial- 
ity. We believe, however, that they are good enough to provide some insight into the 
importance of higher order elastic terms. They are also different from those of 
Berreman and Meiboom [17]. The stability relations allow us additionally to set 
inequalities for the elastic constants that are not present in the uniaxial approxima- 
tion. 

Table 5. Elastic constants n = 2,3,4 for two nematogens. 

E l  MBBA 

3.69 
- 6.46 

5.51 
2.90 

- 5.04 
4.14 

1.49 
- 6.21 

153  
- 1.08 

1.03 
1.21 

- 1.56 
1.32 

1.07 
- 0.55 

The elastic constants are given in 10-6dyn and the estimated error lAKt,l 6 0.05 for 
i = 1,2,3. 

8. Summary 
In this article we have established a Landau-Ginzburg-de Gennes expansion for 

the orientational part of the free energy of nematic and cholesteric liquid crystals, 
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which is complete up to fourth order in the order parameter Q and its gradient dQ.  
In addition, the expansion includes couplings of the order parameter with external 
electric and magnetic fields E, H and a polarization field P. 

Special cases of second and third order expansions have already been proposed in 
the literature [16,17,18,26]. However, they failed to recognize the minimal set of 
independent invariants in third order of the orientation tensor Q. More importantly, 
the results of these studies apply on to strictly uniaxial phases with a position indepen- 
dent order parameter S .  When biaxiality is taken into account these free energies 
appear to be thermodynamically unstable. In [17,18,26] the number of independent 
invariants for the general, biaxial case was overestimated because a Cartesian repre- 
sentation has been used, which cannot easily incorporate the condition that tensor 
order parameter Q and its derivatives be traceless. Thus, an alternative approach with 
which to construct the elastic free energy has been formulated based upon the 
spherical tensor analysis. All invariants have been found employing the spherical 
representation for Q, dQ, P, aP, E and H. Various final forms of this expansion 
have been written in both the spherical and Cartesian representations. In the presenta- 
tion all terms have also been classified with respect to space-time reversal symmetries. 

The analysis presented is more rigorous than previous studies in that the number, 
the explicit form and the linear independence of invariants is immediately evident. 
The method allows us to find all corresponding linearly independent surface terms. 
For many applications, for example, for the normal modes of the hydrodynamic 
equations the surface contributions do not play a role. The topological structure of 
Q suggests that these contributions should also be negligible in the elastic theory. In 
all these cases, surface relations reduce the number of independent invariants and 
simplify the theory. It is perhaps worth mentioning that the problem of finding all 
surface relations for higher orders is non-trivial. 

Let us now concentrate on some specific results. 
It has been emphasized that for general, biaxial nematics with P = E = H = 0 

the correct expansion, that takes into account second and third order terms dQ d Q  
and Q d Q  dQ, respectively, has to be completed by fourth order terms Q Q dQ d Q .  
This expansion counts, in general, twenty-two invariants and four surface relations. 

With the help of the spherical representation, the general expansion with all twenty- 
two terms has been rewritten as a sum of onZy eleven positive definite spherical invariants, 
(cf. equations (20 d, e ) )  leading to simple stability restrictions on the elastic constants. 

The expansion as given by equations (20 d, e) can be easily generalized to the case 
of cholesterics. We note that to include the lowest order cholesteric term [Li2)], it 
is sufficient to replace the invariant [Q'2'a~(2)]'o)"Q'2'aQ'2'](o) by [[Q(2)aQ(2)](o) - A] 
[[Q'2)dQ'2)](o) - A] where A is a parameter. 

At this point one might ask if it is at  all necessary to include in the free energy 
expansion terms that are higher than quadratic in d Q .  To answer this question, we just 
mention as an example that in the proper description of the cholesteric blue phase 
both the higher elastic and chiral terms may play a dominant role for these phases to 
exist at all. Structures that favour bulk terms in the free energy do  not take full 
advantage of possibilities for minimizing the elastic energy, and vice versa. This 
difficulty leads to compromise textures (see, for example, [27]). Blue phases exist only 
in an extremely small temperature range and thus they must be very sensitive even to 
minor changes in the values of elastic constants. Thus, addition of new terms may 
cause considerable changes to the equilibrium solutions for Q and for the value of the 
cholesteric pitch. 
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The phase transitions to nematic, cholesteric or blue phases are strongly first 
order. Just below the isotropic transition the order parameter, S,  is usually more than 
40 per cent of its maximal possible value. Thus, the elastic terms Q i3Q aQ and 
Q Q aQ i3Q art? of the same order as the bulk terms Tr Q3 and (Tr Q2)’, respectively. 
The latter are normally included in the free energy expansion. Finally, the restriction 
that the tensor Q be uniaxial is generally incorrect in the neighbourhood of defects 
[31] and thus it is not sufficient in the theory of blue phases to consider only part of 
the third order terms. A stable expansion requires also higher, fourth order terms and 
all approximations must be consistent with the stability requirements. For this 
purpose, the spherical form, (cf. equation (20 e)) seems to be especially useful. Using 
equation (20 e )  all approximations can be performed in accord with the requirement 
of stability. 

For those who prefer to work in Cartesian representation we have presented 
explicit relations between the spherical and the Cartesian invariants. 

A second, new aspect which the present theory accounts for is the polarization 
field. For many years the investigation of the ferroelectricity in liquid crystals has been 
restricted to the study of induced effects [20,22]. Only recently has evidence become 
available that liquid crystals consisting of molecules with strongly polar end groups 
(cyano or nitro) give rise to spontaneous polar states [21], that are directly related to 
antiferroelectric interactions between molecules. 

In general, the electric polarization can be considered to consist of four parts: 

(a)  The polarization induced by an electric field due to the dielectric polarizability 

(b)  The deformation-induced polarization which at each point depends on Q and 

(c) The polarization associated with the gradient of S .  

( d )  Spontaneous polarization due to the presence of permanent dipole moments. 

Current theories are concerned only with some special aspects of mechanisms (b )  and 
(c). Our expressions include cases (b),  (c) and ( d ) .  The first part of the polarization 
cannot be expressed in terms of local qualities. It depends on the polarization in the 
whole sample. 

Again cholesteric blue phases could be one example for which this additional 
order parameter is important (see, for example, [2]). It is quite possible that the core 
of disclination lines and of point defects also displays local electric order. The 
existence of several new chiral cross-coupling terms between E, P and Q, (cf. equa- 
tion (17)) could be of importance to our understanding of blue phases. Note, that 
these terms are absent when only a magnetic field is switched on. This magnetic- 
electric field symmetry of lowest order couplings should be seen experimentally for 
strongly polar compounds. Probably some of the experimental results of Stegemeyer 
et al. [2]  can be accounted for by including some of these new terms. 

In # 5 and 6 we proposed a general method of relating the OZF theory, the Meyer 
theory and the general Landau-Ginzburggde Gennes expansion. Inherent in the 
method is the assumption that the main contribution to the elastic free energy comes 
from the long range director deformations and that biaxiality is only a short range 
effect due to conformational changes at the molecular level. It is clear that with this 
assumption the free energy of the director field can be calculated as a thermodynamic 
average over biaxial degrees of freedom for fixed A(r) and S .  

of the material. 

aQ. 
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It has been demonstrated that the main effect of the fluctuations is to introduce 
a non-linear dependence of the OZF elastic constants on the bare parameters of the 
Landau-Ginzburg-de Gennes expansion. More profoundly, elastic and bulk proper- 
ties couple in such a generalized theory. In addition, the results of previous publications 
[16-19] can be recovered as special, mean field cases of our general treatment. 

Our calculations allow us to draw further conclusions concerning the temperature 
dependence of the elastic constants. In particular, it has been shown that biaxial 
fluctuations remove the mean field degeneracy of K,,  and K,, without the necessity of 
introducing new elastic constants. In the approximation that neglects derivatives of 
#I we find K33 > K , , .  These results are in agreement with experiments in ordinary 
nematics [lo, 121 and provide an alternative solution of the problem of degeneracy, 
K , ,  = K3,, to those proposed by Rokiszewski [19] and Schiele and Trimper [16]. 

Section 5 and 6 are completed with the list of mean field relations between the 
various theories. Finally, generalizing the analysis of Berreman and Meiboom [17], 
some numerical estimates have been made of the tensor field elastic constants using 
mean field relations and experimental data for the OZF elastic constants. The com- 
plete set of values could, however, be obtained only after finding a way to measure 
complementary elastic constants of the biaxial field. 

All the tedious calculations necessary to obtain the formulas presented in the 
paper were performed using MACSYMA and SCHOONSCHIP computer programs, 
which are specially designed for algebraic manipulations. 

We hope that this work supplies a useful framework for some more detailed 
considerations of liquid crystal structures. 

Appendix 
In this Appendix we use relations between spherical and Cartesian representa- 

tions to prove linear independence of choosen set of invariants Q 8Q LJQ and 
Q Q dQ LJQ. For completeness we also list the formulas for aQ 8Q. First, the set 
of linearly independent spherical invariants is given. Next, these invariants are 
expanded in terms of Cartesian ones. The existence of inverse transformation proves 
their linear independence. The formulas below are also useful in finding stability 
conditions in various representations. Let us define 

5 15 
(a )  m = - 1 z U h  m = - 12(2), 

J 3  45 

where I,(,!,) are given by equation (8 a) .  
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15 
2 

< ( 5 )  = 21 J 5  Z4(5), 

h(7) = 2 1 0 4 5  Z4(7), 

&(3) = - Z4(3), 5 = 15 J 3  Z4(4), 

&(6) = 525 J3 Z4(6), 

&(8) = 450 J7 Z4(8), 
h(9) = 5 J 5  z4(9), <(lo) = 25 J7 I~(Io), 

$(11) = 5 4 7 0  Z4(ll), &(12) = 15 Jl05 Z4(12), 

<(13) = l05J2 Z4(13). 

Now, expressing c( i )  as linear combinations of [Ly)] 

- 
0 0 1 0  0 0 

- 2  2 1 0  0 0 

5 10 - 4  0 0 0 

4 - 4  - 1  4 - 4  0 

7 - 2  - 6  10 0 -10 

-15 - 5  $ 0 25 - 

795 

where n = 2,3,4, i = 1,. 

A(3) = 

0 0  0 

2 0  0 

2 - 2  3 

0 2 -4 

-2 2 0 

-30 50 - 100 

16 -25 0 

-75 100 175 

- 1  0 0 

-5/2 0 0 

- 1/2 0 0 

33/2 -10 20 

-1/2 - 10 0 
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